Variance conditionnelle et prédictions : 7 faits importants

Dans cet article, nous discuterons de la variance conditionnelle et des prédictions utilisant l'espérance conditionnelle pour les différents types de variables aléatoires.

Écart conditionnel

La variance conditionnelle de la variable aléatoire X étant donné Y est définie de la même manière que l'espérance conditionnelle de la variable aléatoire X étant donné Y comme

(X|Y)=E[(XE[X|Y])2|O]

ici, la variance est l'espérance conditionnelle de différence entre la variable aléatoire et le carré de l'espérance conditionnelle de X étant donné Y lorsque la valeur de Y est donnée.

La relation entre le variance conditionnelle et espérance conditionnelle is

(X|Y) = E[X2|Y] – (E[X|Y])2

E[(X|Y)] = E[E[X2|Y]] – E[(E[X|Y])2]

= E[X2] – E[(E[X\Y])2]

puisque E[E[X|Y]] = E[X], on a

(E[X|Y]) = E[(E[X|Y])2] - (EX])2

ceci est en quelque sorte similaire de la relation de variance inconditionnelle et d'espérance qui était

Var (X) = E [X2] - (EX])2

et nous pouvons trouver la variance à l'aide de la variance conditionnelle comme

Var(X) = E[var(X|Y] + var(E[X|Y])

Exemple de variance conditionnelle

Trouver la moyenne et la variance du nombre de voyageurs qui entrent dans le bus si les personnes arrivées au dépôt de bus sont distribuées de Poisson avec la moyenne λt et le bus initial arrivé au dépôt de bus est uniformément distribué sur l'intervalle (0,T) indépendamment des personnes arrivé ou pas.

Solution:

Pour trouver la moyenne et la variance laissées pour tout instant t , Y est la variable aléatoire pour le temps d'arrivée du bus et N(t) est le nombre d'arrivées

E[N(Y)|Y = t] = E[N(t)|Y = t]

par l'indépendance de Y et N(t)

=λt

puisque N(t) est Poisson de moyenne \lambda t
Par conséquent

E[N(Oui)|Oui]=λY

donc prendre les attentes donne

E[N(Oui)] = λE[Y] = λT / 2

Pour obtenir Var(N(Y)), on utilise la formule de variance conditionnelle

éditeur de latex lagrida 21

ainsi

(N(Oui)|Oui) = λY

E[N(Oui)|Oui] = λY

Ainsi, à partir de la formule de la variance conditionnelle,

Var(N(Y)) = E[λO]+(λY)

=λT/2 + λ2T2/ 12

où nous avons utilisé le fait que Var(Y)=T2 / 12.

Variance d'une somme d'un nombre aléatoire de variables aléatoires

considérer la séquence de indépendants et identiques distribué variables aléatoires X1,X2,X3,………. et une autre variable aléatoire N indépendante de cette suite, on trouvera écart de somme de cette séquence comme

CodeCogsEqn 92

en utilisant

éditeur de latex lagrida 48

ce qui est évident avec la définition de la variance et de la variance conditionnelle pour la variable aléatoire individuelle à la somme de la séquence de variables aléatoires, d'où

CodeCogsEqn 93

Prédiction

Dans la prédiction, la valeur d'une variable aléatoire peut être prédite sur la base de l'observation d'une autre variable aléatoire, pour la prédiction de la variable aléatoire Y si la variable aléatoire observée est X, nous utilisons g(X) comme fonction qui indique la valeur prédite, évidemment nous essayez de choisir g(X) proche de Y pour cela le meilleur g est g(X)=E(Y|X) pour cela il faut minimiser la valeur de g en utilisant l'inégalité

éditeur de latex lagrida 49

Cette inégalité, nous pouvons obtenir comme

éditeur de latex lagrida 22

Cependant, étant donné X, E[Y|X]-g(X), étant fonction de X, peut être traité comme une constante. Ainsi,

éditeur de latex lagrida 23

ce qui donne l'inégalité requise

éditeur de latex lagrida 50

Exemples de prédiction

1. On observe que la taille d'une personne est de six pieds, quelle serait la prédiction de la taille de son fils après avoir grandi si la taille du fils qui est maintenant de x pouces est normalement distribuée avec une moyenne x+1 et une variance 4.

Solution : soit X la variable aléatoire désignant la taille de la personne et Y la variable aléatoire pour la taille du fils, alors la variable aléatoire Y est

Y=X+e+1

ici e représente la variable aléatoire normale indépendante de la variable aléatoire X de moyenne zéro et de variance quatre.

donc la prédiction pour la taille des fils est

éditeur de latex lagrida 24

donc la hauteur des fils sera de 73 pouces après la croissance.

2. Considérons un exemple d'envoi de signaux depuis l'emplacement A et l'emplacement B, si depuis l'emplacement A une valeur de signal s est envoyée qui à l'emplacement B est reçue par distribution normale avec moyenne s et variance 1 tandis que si le signal S envoyé en A est normalement distribué avec une moyenne \mu et une variance \sigma^2, comment pouvons-nous prédire que la valeur du signal R envoyé depuis l'emplacement A sera reçue est r à l'emplacement B ?

Solution : Les valeurs du signal S et R désignent ici les variables aléatoires distribuées normalement, nous trouvons d'abord la fonction de densité conditionnelle S étant donné R comme

éditeur de latex lagrida 25

ce K est indépendant de S, maintenant

éditeur de latex lagrida 26

ici aussi C1 et C2 sont indépendants de S, donc la valeur de la fonction de densité conditionnelle est

Image WhatsApp 2022 09 10 à 11.02.40 h XNUMX min XNUMX s

C est également indépendant de s, donc le signal envoyé de l'emplacement A en tant que R et reçu à l'emplacement B en tant que r est normal avec la moyenne et la variance

éditeur de latex lagrida 27

et l'erreur quadratique moyenne pour cette situation est

éditeur de latex lagrida 28

Prédicteur linéaire

Chaque fois que nous ne pouvons pas trouver la fonction de densité de probabilité conjointe, même la moyenne, la variance et la corrélation entre deux variables aléatoires sont connues. Dans une telle situation, un prédicteur linéaire d'une variable aléatoire par rapport à une autre variable aléatoire est très utile et peut prédire le minimum. , donc pour le prédicteur linéaire de la variable aléatoire Y par rapport à la variable aléatoire X, nous prenons a et b pour minimiser

éditeur de latex lagrida 29

Dérivons maintenant partiellement par rapport à a et b nous obtiendrons

éditeur de latex lagrida 26 1

en résolvant ces deux équations pour a et b, nous obtiendrons

éditeur de latex lagrida 31

minimisant ainsi cette attente donne le prédicteur linéaire comme

éditeur de latex lagrida 32

où les moyennes sont les moyennes respectives des variables aléatoires X et Y, l'erreur pour le prédicteur linéaire sera obtenue avec l'espérance de

variance conditionnelle
variance conditionnelle : erreur de prédiction

Cette erreur sera plus proche de zéro si la corrélation est parfaitement positive ou parfaitement négative si le coefficient de corrélation est soit +1 soit -1.

Conclusion

La variance conditionnelle pour le discret et variable aléatoire continue avec différents exemples ont été discutés, l'une des applications importantes de l'espérance conditionnelle dans la prédiction est également expliquée avec des exemples appropriés et avec le meilleur prédicteur linéaire, si vous avez besoin de lectures plus approfondies, consultez les liens ci-dessous.

Pour plus d'articles sur les mathématiques, veuillez consulter notre Page de mathématiques

Un premier cours de probabilité par Sheldon Ross

Les grandes lignes de la probabilité et des statistiques de Schaum

Une introduction aux probabilités et aux statistiques par ROHATGI et SALEH