Analyse des circuits CA | 3+ types et applications importants

Analyse des circuits CA

Crédit d'image - luxiaoxue, 沱沱河 桥 的 夜空 Skynight de la rivière Tuotuo - PanoramioCC BY 3.0

Points de discussion: analyse des circuits CA

Introduction à l'analyse avancée des circuits CA

Dans l'article précédent du circuit CA, nous avons discuté de certaines des analyses de base des circuits CA. Nous avons étudié le circuit, les diagrammes de phaseur, les calculs de puissance et certaines terminologies essentielles. Dans cet article, nous allons apprendre quelques analyses avancées de circuits AC comme - Circuit série RC, circuit série RL, circuit série RLC, etc. Ces circuits avancés sont essentiels et ont plus d'applications dans l'analyse électrique. Tous ces circuits peuvent être considérés comme un autre niveau de circuit alternatif primaire car le circuit plus complexe peut être construit à l'aide de ceux-ci. Veuillez consulter l'article d'introduction sur les circuits avant d'étudier cette analyse avancée des circuits à courant alternatif.

Analyse de base du circuit CA: Lire ici!

Circuit série RC

Si une résistance pure est placée dans une série avec un condensateur pur dans un circuit CA, alors le circuit CA sera appelé Circuit Série CA RC. Une source de tension alternative produit des tensions sinusoïdales et le courant passe à travers la résistance et le condensateur du circuit.

  • Schéma de circuit du circuit série RC
Circuit série RC, analyse de circuit AC
Circuit série RC, analyse de circuit CA - 1

VR donne la tension aux bornes de la résistance et - VC donne la tension aux bornes du condensateur. Le courant à travers le circuit est I. R est la résistance et C est la valeur de capacité. XC désigne la réactance capacitive du condensateur.

  • Diagramme de phase du circuit série RC
Diagramme de phaseur du circuit de la série RC, analyse du circuit à courant alternatif - 2, crédit d'image - Saure at Wikipédia en allemandWiderstand ZeigerRCCC BY-SA 3.0

Le processus pour dessiner le diagramme de phaseur du circuit RC.

Le diagramme de phaseur est un outil d'analyse essentiel qui permet d'étudier le comportement du circuit. Apprenons les étapes pour dessiner le phaseur.

Étape 1 : Découvrez la valeur efficace du courant. Marquez cela comme vecteur de référence.

Étape 2 : Comme nous savons que pour un circuit purement résistif, la tension et le courant restent dans la même phase, ici aussi la chute de tension aux bornes de la résistance reste en phase avec la valeur du courant. Il est donné par V = IR.

Étape 3 : Maintenant, pour le circuit capacitif, nous savons que la tension est en retard de 90 degrés et que le courant est en avance. C'est pourquoi la chute de tension à travers le condensateur de ce circuit reste à 90 degrés derrière le vecteur actuel.

Étape 4 : La tension appliquée est donc la somme vectorielle des chutes de tension du condensateur et des résistances. Donc, cela peut être écrit comme suit:

V2 = RV2 + VC2

Ou, V2 = (JeR)2 + (IXC)2

Ou, V = I √ (R2 + XC2)

Ou, I = V / √ (R2 + XC2)

Ou, I = V / Z

Z est l'impédance globale du circuit RC. L'équation suivante représente la forme mathématique.

Z = (R2 + XC2)

Maintenant, à partir du diagramme de phaseur, nous pouvons observer qu'il y a un angle comme - ϕ.

Donc, tan ϕ sera égal à IXC / JeR.

Alors, ϕ = bronzé-1 (IXC / JeR)

Cet angle ϕ est appelé angle de phase.

  • Calcul de la puissance du circuit série RC

La puissance du circuit est calculée par la formule P = VI. Ici, nous allons calculer la valeur instantanée de la puissance.

Donc, P = VI

Ou, P = (Vm Sinωt) * [Jem Sin (ωt + ϕ)]

Ou, P = (Vm Im / 2) [2Sinωt * Sin (ωt + ϕ)]

Ou, P = (Vm Im / 2) [cos {ωt - (ωt + ϕ)} - cos {ωt - (ωt + ϕ)}]

Ou, P = (Vm Im / 2) [cos (- ϕ) - cos (2ωt + ϕ)]

Ou, P = (Vm Im / 2) [cos (ϕ) - cos (2ωt + ϕ)]

Ou, P = (Vm Im / 2) cos (ϕ) - (Vm Im / 2) cos (2ωt + ϕ)

Nous pouvons observer que l'équation de puissance comporte deux sections. L'une est une partie constante, l'autre est la section variable. La moyenne de la partie variable devient nulle sur un cycle complet.

Ainsi, la puissance moyenne d'un circuit série RC, sur un cycle complet, est donnée comme suit:

P = (Vm Im / 2) cos (ϕ)

Ou, P = (Vm / 2) * (JEm /2) * cos (ϕ)

Ou, P = VI cos (ϕ)

Ici, V et I sont considérés comme des valeurs RMS.

Le facteur de puissance du circuit série RC

Le facteur de puissance du circuit série RC est donné par le rapport entre la puissance active et la puissance apparente. Il est représenté par cosϕ et exprimé comme ci-dessous l'expression donnée.

cos = P / S = R / (R2 + XC2)

Circuit de la série RL

Si une résistance pure est placée en série avec une inductance pure dans un circuit CA, alors le circuit CA sera appelé Circuit Série CA RL. Une source de tension alternative produit des tensions sinusoïdales et le courant passe à travers la résistance et l'inductance du circuit.

  • Schéma de circuit du circuit RL
Circuit série RL, analyse de circuit CA - 3

VR donne la tension aux bornes de la résistance et - VL donne la tension aux bornes de l'inducteur. Le courant traversant le circuit est I. R est la résistance et L est la valeur d'inductance. XL désigne la réactance inductive de l'inducteur.

  • Diagramme de phase du circuit RL
Diagramme de phase de circuit RL, analyse de circuit CA - 4, crédit d'image - SaureRL I (U) -ZeigerCC BY-SA 3.0

Le processus pour dessiner le diagramme de phase du circuit RL.

Étape 1 : Découvrez la valeur efficace du courant. Marquez cela comme vecteur de référence.

Étape 2 : Comme nous le savons, pour un circuit purement résistif, la tension et le courant restent dans la même phase, ici aussi la chute de tension aux bornes de la résistance reste en phase avec la valeur du courant. Il est donné par V = IR.

Étape 3 : Maintenant, pour le circuit inductif, nous savons que la tension est supérieure à 90 degrés et que le courant est en retard. C'est pourquoi la chute de tension à travers l'inductance de ce circuit reste à 90 degrés en avant par rapport au vecteur actuel.

Étape 4 : La tension appliquée est la somme vectorielle des chutes de tension de l'inductance et des résistances. Ainsi, il peut s'écrire:

V2 = VR2 + VL2

Ou, V2 = (JeR)2 + (IXL)2

Ou, V = I √ (R2 + XL2)

Ou, I = V / √ (R2 + XL2)

Ou, I = V / Z

Z est l'impédance globale du circuit RL. L'équation suivante représente la forme mathématique.

Z = (R2 + XL2)

Maintenant, à partir du diagramme de phaseur, nous pouvons observer qu'il y a un angle comme - ϕ.

Donc, tan ϕ sera égal à IXL / JeR.

Donc, ϕ = tan-1 (XL / R)

Cet angle ϕ est appelé angle de phase.

  • Calcul de la puissance du circuit de la série RL

La puissance du circuit est calculée par la formule P = VI. Ici, nous allons calculer la valeur instantanée de la puissance.

Donc, P = VI

Ou, P = (Vm Sinωt) * [Jem Péché (ωt- ϕ)]

Ou, P = (Vm Im / 2) [2Sinωt * Sin (ωt - ϕ)]

Ou, P = (Vm Im / 2) [cos {ωt - (ωt - ϕ)} - cos {ωt - (ωt - ϕ)}]

Ou, P = (Vm Im / 2) [cos (ϕ) - cos (2ωt - ϕ)]

Ou, P = (Vm Im / 2) cos (ϕ) - (Vm Im / 2) cos (2ωt - ϕ)

Nous pouvons observer que l'équation de puissance comporte deux sections. L'une est une partie constante, l'autre est la section variable. La moyenne de la partie variable devient nulle sur un cycle complet.

Ainsi, la puissance moyenne d'un circuit série RL, sur un cycle complet, est donnée comme suit:

P = (Vm Im / 2) cos (ϕ)

Ou, P = (Vm / √2) * (Im / √2) * cos (ϕ)

Ou, P = VI cos (ϕ)

Ici, V et I sont considérés comme des valeurs RMS.

Circuit série LC

Un circuit série LC est un circuit CA composé d'un inducteur et d'un condensateur, placé dans une connexion en série. Un circuit LC a plusieurs applications. Il est également connu sous le nom de circuit résonnant, circuit accordé, filtres LC. Comme il n'y a pas de résistance dans le circuit, idéalement ce circuit ne subit aucune perte.  

Circuit LC en tant que circuit accordé: Le flux de courant signifie des flux de charges. Maintenant, dans un circuit LC, les charges continuent à circuler derrière et devant les plaques de condensateur et à travers l'inducteur. Ainsi, un type d'oscillation est créé. C'est pourquoi ces circuits sont appelés circuits accordés ou circuit de réservoir. Cependant, la résistance interne du circuit empêche l'oscillation en réel.

  • Schéma du circuit de la série LC
Circuit série LC, circuit de réservoir, analyse de circuit ca

Dans un circuit en série, la valeur du courant est la même sur tout le circuit. Donc on peut écrire ça, Je = jeL = IC.

La tension peut être écrite comme V = VC + VL.

  • Résonance en série LC Circuit

La résonance est considérée comme une condition particulière de ce circuit LC. Si la fréquence du courant augmente, la valeur de la réactance inductive augmente également et la valeur de la réactance capacitive diminue.

XL = ωL = 2πfL

XC = 1 / C = 2πfC

À la condition de résonance, l'amplitude de la réactance capacitive et de la réactance inductive est égale. Donc, on peut écrire que XL = XC

Ou, ωL = 1 / ωC

Ou, ω2C = 1 / CL

Ou, ω = ω0 = 1 / LC

Ou, 2πf = ω0 = 1 / LC

Ou, f0 =0 / 2π = (1 / 2π) (1 / √LC)

f0 est la fréquence de résonance.

  • L'impédance du circuit

Z = ZL + ZC

Ou, Z = jωL + 1 / jωC

Ou, Z = jωL + j / j2ωC

Ou, Z = jωL - j / ωC

À propos de Sudipta Roy

Je suis un passionné d'électronique et je me consacre actuellement au domaine de l'électronique et des communications.
J'ai un vif intérêt pour l'exploration des technologies modernes telles que l'IA et l'apprentissage automatique.
Mes écrits sont consacrés à fournir des données précises et mises à jour à tous les apprenants.
Aider quelqu'un à acquérir des connaissances me procure un immense plaisir.

Connectons-nous via LinkedIn - https://www.linkedin.com/in/sr-sudipta/

Geeks Lambda